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Ising model of polarity formation in molecular crystals:
From the growth model to the asymptotic equilibrium state
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We analyze a layer-by-layer growth model of crystals consisting of dipolar molecules with two directional
states. The model is characterized by the assumption of thermal equilibrium formation of new adlayers,
whereas previous layers are treated as being ‘‘frozen’’ in the state in which they were formed. Longitudinal and
transverse Ising-type nearest neighbor interactions are taken into account. Under such assumptions, bulk
polarization is known to arise. We mainly consider asymptotic one- and two-layer statistics after many steps of
growth; we have obtained a theorem relating this statistics to thermal equilibrium of an appropriate two-layer
system. Local polarization patterns resembling those of ferromagnetism and antiferromagnetism emerge, de-
pening on signs and magnitudes of the coupling constants. We have explored such effects by means of
simulations, by a mean field approximation, and by a Bethe-Peierls analysis.
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I. INTRODUCTION

Recently, we have shown that a macroscopic state fea
ing polar properties may arise as a result of orientatio
selectivity of dipolar molecules being attached to a crys
surface during growth@1#. In view of different growth
speeds, we have to distinguish between effects being kin
in nature and those related to conditions of thermal equi
rium. In the present work we consider phenomena in
limit of slow growth, where it is reasonable to assume t
adlayers are formed in thermal equilibrium. Scanning py
electric microscopy, phase-sensitive second-harmonic
croscopy@2,3#, and Markov-chain@4,5# studies providing ex-
amples and understanding of spontaneously evoluting p
properties during the growth of host-guest and sing
component molecular crystals have introduced a fundam
tally new view on how molecular crystals built from dipola
molecules can develop a pyroelectric symmetry class b
mechanism of growth. As shown previously@6#, the Markov-
chain mechanism of polarity formation can transform a c
trosymmetric seed crystal, e.g.,P21 /c, into a twinned state
where polar properties develop in the positive and negativb
sector. As shown by phase-sensitive second-harmonic
croscopy@7#, the direction of the net polarization in thes
sectors is opposite.

The system to be investigated here is defined as follo
A single-component crystal built up from dipolar molecul
is subjected to slow layer-by-layer growth. Dipolar entitit
@represented by donor~D! and acceptor~A! type molecular
fragments bound to ap-conjugated frame# are attached to a
face (hkl) of whatever the given seed crystal structure
Among the possible processes which can occur during
attachment of molecules to surface sites, we consider o
those with one degree of freedom: the up or down orienta
of the dipole moment of the admolecules. For t
(hkl)-substrate layer itself~i.e., the layer attached in the pre
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vious step!, no degree of freedom with respect to up or dow
is allowed. For the molecular crystals we are consider
here, the assumption of a frozen substrate is justified du
the very large energy of activation for a reversal of the po
orientation of molecules within the substrate layer (Ea
.50 kJ/mol for prolate top molecules!. Arranged as this, we
investigate the evolution of orientational order, especially
long sequences of layer-by-layer growth. Independent
whether growth started from a perfectly ordered centrosy
metric or noncentrosymmetric substrate seed crystal, e
adlayer will accomodate some degree of orientational ord
ing, the statistics being determined by the requirement of
global minimum of the free energy of an adlayer. The pres
concept is fresh and has not been considered by the stan
models of crystal growth of molecular materials. Applicatio
is widespread, because all crystals built from dipolar m
ecules, at least in principle, are expected to show grown
effects of polarity. Typical candidates are derivatives
benzene- and stilbene-type frameworks. For examples,
@5#.

In the present work we will address the interesting qu
tion as to whether the limiting layer statistics—after an ar
trarily large number of growth steps—can be conceived
some sense as a thermal equilibrium statistics of an isol
system. In fact, we have found that the asymptotic statis
of the two-layer system consisting of the thermalized adla
and the previously formed substrate is the canonical dis
bution of a two-layer system with appropriate interaction
This allows us to set up an Ising-type Hamiltonian to discu
phase transitions as a function of coupling parameters
temperature. In the sections to follow we have worked ou
formalism describing this equivalence. Monte Carlo metho
are used to portray the basic behavior of the system du
growth. Average values of layer polarization and phase tr
sition characteristics are calculated by a mean field as we
by a Bethe-Peierls approximation.

Some of our assumptions are very close to those form
lated in a model for growth of binary alloys@8#, where atoms
are allowed to interact and to equilibrate at the surface,
are frozen in the bulk. In that model too, the asymptotic la
©2002 The American Physical Society05-1



In
o
a
.

u

r

ly

th
e
th
e

m
r

re

o
ng

ar

th
le
y
rg
ac
th

b
di
-
n

or
me
e-
ce

.

nal

le

tum

the
x-

the
to
e-
on-

s of
lib-
ac-
o-

r-
ally

le

-
n
.

a-

BEBIE, HULLIGER, EUGSTER, AND ALAGA-BOGDANOVIĆ PHYSICAL REVIEW E 66, 021605 ~2002!
statistics~beyond a transient thickness! was proved to corre-
spond to the thermal equilibrium of a two-layer system.
our case, however, the corresponding theorem is more c
plicated, due to the fact that the longitudinal interaction h
less symmetry in our case. Details are worked out in Sec

II. GROWTH MODEL: DEFINITION OF INTERACTIONS

In the model discussed in the present paper, a rectang
crystal is growing layer-by-layer in the positivez direction.
Molecules are arranged on a square lattice. The numbe
molecules per layer is denoted byN5nxny ~usually, nx
5ny). The molecules are of the dipolar type featuring simp
two directional states (s561 in the z direction!. Nearest
neighbor interactions among dipolar molecules within
same layer and between adjacent layers are assumed, th
interaction energy depending on the directional states of
two molecules involved. The main assumptions on the lay
by-layer growth process are the following:~i! A new layer
starts to be formed only after the preceding layer is co
pleted.~ii ! When a new layer is attached, the former laye
~indices 0, . . . ,z) are assumed to be ‘‘frozen’’~i.e., they are
kept fixed permanently in the state in which they we
formed!, whereas the new layer~index:z11) relaxes to ther-
mal equilibrium, taking the nearest neighbor interactions
dipolar molecules within the layer and with correspondi
sites of the formerly grown layer into account.~iii ! Thermal
relaxation of a layer takes place after all its molecules
attached.~iv! The state of the seed layer (z50) is given
explicitly. These assumptions are supported by the fact
in molecular crystals of elongated prolate-type molecu
the activation energy for dipole reversal in the substrate la
is high and that molecular crystals generally do not unde
surface reconstruction. Thermal relaxation of the surf
layer will not always be met: this assumption requires
surface layer to have sufficient time to equilibrate, before
is completed, i.e., the time for the growth of a layer must
larger than surface layer relaxation times. This issue is
cussed in Ref.@8# in connection with growth of binary al
loys. More precisely, we assume the following interactio
among dipolar molecules~see Fig. 1!.

FIG. 1. Interactions between dipolar molecules~arrows!. The
arrows indicate the orientational state of the dipolar molecu
(A→D or D←A; polarizations11 and 21 with respect to the
direction of growth!. z: direction of growth.x, y : transverse direc-
tions ~2D!. EAD , EDD , EAA : nearest neighbor longitudinal interac
tion energies.Ep , Eap : nearest neighbor transverse interaction e
ergies. Layer-by-layer growth gives rise to net bulk polarization
02160
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~a! Transverse interactions. We assume nearest neighb
Ising interactions between dipolar molecules within the sa
layer.DE'5Ep2Eap denotes the pair energy difference b
tween parallel and antiparallel polarizations. We introdu
the dimensionless couplingQ'5DE' /kT. A negative value
of Q' favors equal polarization of neighbors within layers

~b! Longitudinal interactions. The polarization vector of a
dipolar molecule points from the electronic acceptor termi
~A! to the electronic donor~D! terminal, symbolicallyA
→D. In Table I,s8 denotes the polarization of the molecu
of layerz ~formerly grown, now frozen!, s the polarization of
the molecule of layerz11 ~being attached and thermalized!,
both at the same site (x,y). EAA stands for the interaction
energy betweenA and A terminals (s8521, s511;
DA•••AD), likewise EDD for AD•••DA and EAD for
AD•••AD or DA•••DA. Without loss of generality, inter-
action energies can be given with respect toEAD ; basic pa-
rameters, therefore, areDEA5EAA2EAD and DED5EDD
2EAD . The dimensionless couplingsR are expressed in
terms ofA5DEA /kT andD5DED /kT ~see Table I!. Inter-
molecular interaction energies are accessible by quan
mechanics calculations@9,10#. Typical values forEAA , EDD ,
EAD range from several to about 40 kJ/mol. Examples are
known H-bond-type interactions. The majority of the e
amples given in Ref.@5# belong to the sectorDEA , DED ,
DE'.0; in these cases, the coupling is ferromagnetic in
direction of growth, and antiferromagnetic perpendicular
it ~Fig. 2, row d!. For a systematic account of possible ph
nomena we shall also treat other sectors of the coupling c
stants.

To summarize, one step of the growth process consist
the attachment of a complete new layer in thermal equi
rium under the influence of its internal transverse inter
tions and of the interactions with the former layer. The tw
dimensional~2D! Ising-type HamiltonianH1 determining
thermal equilibrium of the new layer~with polarizationssxy ,
x51, . . . ,nx , y51, . . . ,ny! under the influence of the fixed
state of the former layer~described by its polarizationssxy8 )
is

H1~$s%!/kT5(
x,y

Q'

2
sx,y~sx,y111sx11,y!

1(
x,y

R~sx,y8 ,sx,y!, ~1!

whereR(s8,s) is defined in Table I. For the transverse inte
actions boundary conditions have to be formulated, usu

s

-

TABLE I. Longitudinal interactions between molecules of adj
cent layers at corresponding sites.

Layer z Layer z11
s8 s Energy R(s8,s)

2 2 EAD 0
2 1 EAA A5DEA /kT
1 2 EDD D5DED /kT
1 1 EAD 0
5-2
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FIG. 2. Simulation of typical growth processes. Layer size 10310. x, y, z denote the axes (z: direction of growth, from left to right!.
Squares display single layers, rectangles show side views~planex50). Columns:~A! layer z50 ~seed, given explicitly!, ~B! side view
(z50 –30), ~C! layer z529, ~D! layer z530, ~E! side view (z5270–330),~F! layer z5329, ~G! layer z5330. Last three columns
couplings (A, D, Q'). Rows: ~a! uniformly polarized seed (s0511), ~b! randomly polarized seed,~c! initial configuration metastable
switching to a stable one at aboutz5300, ~d! layer organization AFO,~e! polarizations alternating from layer to layer, layer organizati
AFO, ~f! polarizations alternating from layer to layer, layer organization FO.
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either open or periodic, and taken care of in the first sum
Eq. ~1!. In simulations we use periodic boundary condition

III. BASIC PHENOMENA IN „A, D, Q�… SPACE

The thermal character of the formation of new layers ca
for a statistical description of the crystal. Given the layer s
nx , ny , the process is fully determined by the couplingsA,
D, Q' and by the state of the initial layer (z50). It does not
come as a surprise that the memory for the initial state g
lost in the course of the growth process. In the present pa
we are mainly concerned with the asymptotic statistics of
layer after many steps and for the asymptotic correlation
tween a layer and its predecessor~in the present paper quote
as the large-z limit !.

The main characteristics of the growth process for a
given set of couplings and for different initial conditions c
be observed by means of simulations. Some examples
displayed in Fig. 2. Typical layers remind of Ising-like stru
tures, due to the influence of the transverse interaction.
negative values ofQ' , ferromagnetic ordering~FO! with a
tendency to equal polarization of neighbors can be expec
whereas positive values ofQ' favor local antiferromagnetic
ordering~AFO! within the same layer. In longitudinal direc
tion two main patterns can be observed, again dependin
the couplings: either the new layer reproduces more or
the previous one, or its polarities are opposite to the previ
ones at corresponding sites.

In full generality, the asymptotic statistics~large-z limit !
ought to be described for all points of the parameter sp
(A,D,Q'). For the sake of an overview, the remainder of t
present section is restricted to a discussion of the follow
special cases:~i! Q'→`, ~ii ! Q'→2`, ~iii ! no transverse
coupling,Q'50, ~iv! dependence onQ' for some fixedA
.0, D.0 ~always in the large-z limit !.

~i! For Q'→`, the layer exhibits a checkerboardlike pa
tern ~AFO!: sxy5s0(21)x1y, where the signatures0 is 11
or 21. The energy required to change the signature from
layer to the next isN(DEA1DED)/2. Therefore, for finite
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layer sizeN, the probabilitypc of the signature to chang
from one layer to the next is given by

pc5
1

11eN(A1D)/2
. ~2!

For largeN and fixedA andD, this formula gives a simple
picture for the transition from one layer to the next: forA
1D,0 the signature will alternate; forA1D.0, the signa-
ture remains the same~see Fig. 3, right!. The examples dis-
played in Fig. 2@rows~d! and~e!# approximate this behavior
The switching behavior is already discussed in@5,11#.

~ii ! For Q'→2`, the layer is homogeneous~FO!: sxy
5s0, where the layer polarizations0 is 11 or 21. The
transition probabilitiesps

08s
09

from layer polarizations08 to s09

are given by

p115~11e2ND!21, p125~11eND!21,

p215~11eNA!21, p225~11e2NA!21. ~3!

FIG. 3. Idealized layer statistics and layer pair statistics for la
transverse interaction in the large-z limit. Left: Q'→2`. Right:
Q'→1`. Symbols 1 and 2 indicate local polarizations~four
sites of two consecutive layers!. Layer organization may be of FO
or AFO type, and may reproduce or alternate from one layer to
next. For each of the five different regimes an example can be fo
in Fig. 2.
5-3
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TABLE II. Attachment of an admolecule: summary of eight situations~mean field approximation!. s8,
polarization of substrate molecule;s, polarization of admolecule at same site. The mean field estimate o
coupling energy depends on the sublatticeg to which the site belongs.

Sublattice Branching
g s8 s Coupling probability

1 2 – – 12Q'(122q(1)) v1

2 2 – 1 22Q'(122q(1))1A v2512v1

3 2 1 1 22Q'(122q(1)) v3

4 2 1 – 12Q'(122q(1))1D v4512v3

5 1 – – 12Q'(122q(2)) v5

6 1 – 1 22Q'(122q(2))1A v6512v5

7 1 1 1 22Q'(122q(2)) v7

8 1 1 – 12Q'(122q(2))1D v8512v7
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From this matrix we obtain the mean lengthsL̄6 of chains of
equally polarized layers~polarities11 or 21, repectively!,

L̄1511eND, L̄2511eNA. ~4!

In the large-N limit these expressions imply the followin
picture of the transition behavior. For the sectorA,0,D
,0 the polarization alternates from layer to layer. ForD
.0, D.A, starting from any state of the first layer (z50)
the asymptotic layer polarization is 1 (z→`); for A.0, A
.D, the asymptotic layer polarization is21 ~see Fig. 3,
left!. In the sectorA.0,D.0 there are metastable state
such as, for example, the layer states0521 in the range
D.A.0, due to the extremely small transition probabili
'e2NA from layer polarization21 to 11; similarly, s05
11 is metastable in the rangeA.D.0.

~iii ! We now consider the case of missing transverse c
pling, Q'50, which is well known from the 1D treatment o
the present model (nx5ny51) @4#. Along the direction of
growth, a site (x,y) undergoes a stochastic process w
fixed transition probabilites from one polarization to t
other, the mean length of chains of constant polarization
ing given by

L̄11511eD, L̄12511eA. ~5!

More details on the single chain can be found in the App
dix.

~iv! Finally, we assumeA.0 andD.0 to be held fixed
and discuss the behavior of the layer as a function ofQ' .
The most prominent feature is the phase transition to
AFO state occurring at some valueQ'5Q'

(crit)(A,D).0,
such that forQ'.Q'

(crit) the two sublattices have a differen
mean polarization~sublattice 1,x1y5odd; sublattice 2,x
1y5even); forQ',Q'

(crit) the layer is homogeneous. Th
behavior atQ'5Q'

(crit) ~for fixed A,D) corresponds to the
ferromagnetic-antiferromagnetic transition in magnetism
the presence of an external field. More details on this p
nomenon will be given in Secs. IV and VI.
02160
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IV. MEAN FIELD DESCRIPTION

In the present section we restrict ourselves to the se
A.0, D.0 and use a mean field approximation to discu
the stationary layer statistics~large-z limit !, which is ex-
pected to exist in this sector. This approximation turns ou
be sufficient for an understanding of the AFO-phase tran
tion ~see below!.

For sufficiently large positive values ofQ' the layer is
expected to exhibit approximately an AFO structure~see Sec.
III !, i.e., markedly different spatial averages of the polari
tion for the two sublattices. In view of this effect we intro
duce separate spatial mean polarizationss(1) ands(2) for the
two sublatticesg (g51,2). The probability of a site of sub
latticeg to have positive polarization isq(g)5(s(g)11)/2. In
the spirit of the mean field approximation we disregard lo
correlations. In view of the symmetry between the two su
lattices, we may introduce the conventionq(2)<q(1).

Let us consider a site (x,y) of the substrate layer~polar-
ization s8); s denotes the polarization of the molecule to
attached at the corresponding site (x,y) of the new layer. The
eight possible situations are listed in Table II. The colum
‘‘coupling’’ gives the expectation value of the coupling e
ergies~divided by kT). Given the states8 of the substrate
molecule and its sublattice, there is a pair of two compet
processes,s8→21 or s8→11 ~such as, for example, pro
cesses 1 and 2!. Note that the mean field estimate of th
couplings assumes thermalization of the adlayer after al
molecules are attached.
Based on the assumption of the thermal equilibrium form
tion of the new layer, the probabilitiesv i defined in Table II
are given by the following expressions~derived from the
mean field estimate of the energy difference within the p
see Table II!:

v15@11e14Q(122q(1))2A#21, ~6!

v35@11e24Q(122q(1))2D#21, ~7!

v55@11e14Q(122q(2))2A#21, ~8!

v75@11e24Q(122q(2))2D#21. ~9!
5-4



ua

yp
s
r

n
io

ns

t

r of

re

for

ped
r

t

of
m-
ibed

el.
s

our

re-

an
wo

act
ain

n
b
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For the asymptotic statistics (z→`), the probabilitiesq(s)

are the same for both layers, leading to the following eq
tions of consistency:

q(1)~12v7!5~12q(1)!~12v5!, ~10!

q(2)~12v3!5~12q(2)!~12v1!. ~11!

After inserting v1 , . . . ,v7 from Eqs. ~6!–~9!, this pair of
equations determinesq(1) andq(2) for givenA, D, Q' . First
we extract the solutions with the propertyq(1)5q(2)5q, cor-
responding to equal sublattice polarizations. These FO t
solutions are expected to exist at least for negative value
Q' . In this case Eq.~11! or Eq.~10! can easily be solved fo
Q' ,

Q'~q!5
1

4~122q!

3 lnF ~2q21!1A~2q21!214q~12q!eAeD

2eD~12q!
G .

~12!

The curve in the (Q' ,q) plane obtained from this relatio
may be termed the FO curve in mean field approximat
@Fig. 4~a!, thin line#. Note that forA.D.0 the branch 0
,q,0.5 has to be taken, and forD.A.0 the branch 0.5
,q,1. As we shall see below, the solution~12! is unphysi-
cal beyond some positive value ofQ' , where the transition
to the AFO state occurs (A.0 andD.0 held fixed andQ'

increasing!.
We now turn our attention to solutions of the typeq(1)

Þq(2), corresponding to different sublattice polarizatio

FIG. 4. Layer polarization in the large-z limit. A52.0, D50.8.
Abscissa:Q' . Ordinate: sublattice and mean layer polarization.~a!
Mean field approximation,~b! Bethe approximation. Thin line, FO
type solution (s(1)5s(2)); solid thin line, physical FO range; broke
thin line, unphysical range of FO -type solution. Thick lines: su
lattice and mean polarizations in AFO range.1 : simulation results.
02160
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~AFO -type solution!. They can be found numerically from
the pair of equations~10!, ~11!. It turns out that they do exis
for given A.0, D.0 for values ofQ' exceeding some
positive critical valueQ'

(crit)(A,D). Intuitively it is clear that
these solutions correspond to the expected AFO behavio
layers for sufficiently large positive values ofQ' . Figure
4~a! displays the sublattice polarizationss(1), s(2) and the
mean layer polarizations5(s(1)1s(2))/2 as functions ofQ'

~thick lines!. In this range,Q'
(crit),Q' , the solutions of the

type q(1)5q(2) found previously must be unstable: they a
artifacts of our system of equations@Fig. 4~a!, dashed line#.

At the phase transition the mean field approximation
s(Q') exhibts a kink@Fig. 4~a!#. The kink is also obtained in
the Bethe approximation@see Sec. VI and Fig. 4~b!#. So far
we could not reproduce this kink in our simulations~Fig. 4,
symbols1). Simulation results for layer sized 50350 and
1003100 were obtained by means of the method develo
in Sec. VI ~canonical distribution of an equivalent two-laye
system!. Typically, 1010 Monte Carlo trials were carried ou
for a given set of parameters (A, D, Q'). Sublattice polar-
izations in the AFO range were estimated from the peaks
their distribution. In our programs we used the random nu
ber generator introduced by Bays and Durham as descr
in Ref. @12#.

The critical valueQ'
(crit) depends only weakly onA andD.

For A5D50 we obtainQ'
(crit)51/2, the well known critical

value in the mean field approximation of the Ising mod
For A52 andD50.8 the mean field approximation yield
Q'

(crit)'0.33 (0.54 from simulations!.
Though the mean field description~MFD! presented in

this section is not expected to match the behavior of
process accurately, it has some remarkable merits.

~i! For typical values ofA and D and for anyQ' , the
MFD polarization agrees reasonably well with simulation
sults;

~ii ! The MFD is able to account for the existence of
AFO phase transition, where the polarizations of the t
sublattices assume different values spontaneously~with a
critical exponent of 1/2!; it is observed, e.g., at fixedA, D
with increasingQ' .

~iii ! For Q'50, the chains are independent and the ex
mean polarization can be taken from the isolated ch
analysis~see Appendix!,

s~Q'50!5
eD2eA

21eD1eA
. ~13!

The same result follows from the MFD@Eq. ~12!, Q'50#.
~iv! At Q'50, even the slopeds/dQ' as given by the

MFD is exact,

ds

dQ'
U

Q'50

58
e2A~112eD!2e2D~112eA!

~21eA1eD!3
. ~14!

This expression can be derived by differentiating Eq.~11! or
Eq. ~10! with respect toQ' , setting Q'50, solving for
dq/dQ' , and finally ds/dQ'52dq/dQ' . Remember that
we haveq(1)5q(2)5q at Q'50. The exactness of Eq.~14!

-

5-5
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is due to the following properties of the MFD:~i! the result
for s is exact atQ'50, and~ii ! the influence of the trans
verse coupling on the transition probabilities is taken in
account exactly up to first order inQ' ~first-order perturba-
tion obtained from the expectation value of the transve
coupling in the unperturbed state!.

V. THE ASYMPTOTIC DISTRIBUTION OF THE LAYER
STATE „z\`…

In this section we concern ourselves with the asympto
distribution ps of the statess (s51, . . . ,2N) of the front
layer after infinitely many steps~layer indexz→`). A state
s of a layer is specified by the values of all polarization
$sxy%. All statistics of the growth process, including th
asymptotic distribution, is determined by the transition m
trix P: its elementsPs8s are the transition probabilities from
a given~frozen! substrate layer states8 to the states of the
newly attached layer. From the assumptions of the gro
model, we have

Ps8s5
Ls8sGs

(
s9

Ls8s9Gs9

, ~15!

where

Ls8s5exp~2Es8s
long/kT!, ~16!

Gs5exp~2Es
trans/kT!. ~17!

Es8s
long denotes the longitudinal coupling energy between

substrate layer states8 and the states of the attached layer
andEs

trans is the total energy originating from the transver
couplings within the layer states.

The asymptotic distributionp must satisfy

(
s8

ps8Ps8s5ps , ~18!

(
s

ps51. ~19!

We claim that the vectorp with elements

ps5ceNs
1D1Ns

2AGs(
s9

Lss9Gs9 ~20!

provides the solution of Eq.~18! @13#; c denotes the normal
ization factor to be adjusted to satisfy Eq.~19!; Ns

s is the
number of molecules of polarizations in the states of the
layer. This theorem can be verified by inserting expressi
~15! and ~20! into both sides of Eq.~18!. After cancellation
of sums of the type(s9Ls8s9Gs9 on the left, the two sides
are seen to be identical, if the equality

eNs
1D1Ns

2ALss85eN
s8
1

D1N
s8
2

ALs8s ~21!

holds. Note that this equation does not involve the transve
interactions. Due to the independence of the chains, it
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fices to prove it for one single chain (s8→s8, s→s), which
can easily be worked out for the four combinations ofs8,s.

A. The asymptotic distribution of layer states as a canonical
distribution

Equation~20! constitutes an expression for the probabil
ps of a layer states in the large-z limit. Note that the
number of terms in the sum of Eq.~20! rises exponentially
with increasing number of molecules per layer; therefore,
practical value for a direct computation ofps is rather lim-
ited. Nevertheless, an elegant formula forp, such as Eq.
~20!, is most welcome. In the present section we use
formula in order to prove a close relation between t
asymptotic statistics of the layer-by-layer growth mod
~GM! on the one hand and the thermodynamic equilibrium
a certain two-layer system~subsequently termed LL! on the
other.

We define

Ks8s5eN
s8
1

D1N
s8
2

AGs8Ls8sGs ~22!

and note that the probability~20! of the states can be writ-
ten as

ps85c(
s

Ks8s . ~23!

Note thatK is symmetrical,Ks8s5Kss8 @see Eq.~21!#. The
main point is the following: the sum

Z5 (
s8,s

Ks8s ~24!

can be interpreted as the partition sum of a certain two-la
system LL, wheres8 ands denote the states of its first an
second layer. The interactions governing the system can
read off fromKs8s , in that the factors in expression~22! can
be interpreted as Boltzmann factors corresponding to cer
transverse, longitudinal, and external field couplings of
appropriate two-layer system. The system LL and its inter
tions will be described in greater detail below. From Eq
~23! and~24! the link between this two-layer system LL an
the asymptotic statistics of the GM as given by Eq.~20! is
now evident: the GM probabilityps8 is equal to the proba-
bilty of the states8 of one of the two layers of LL~in
thermodynamic equilibrium!.

The structure and the interactions of the two-layer syst
LL defined by its partition sumZ can be read off from Eq.
~22!.

~i! LL consists of two layers (L8, L) of the same size as
the layers in the GM. Like in GM, each grid point carries t
polarity 21 or 11. The indexs8 denotes the state ofL8, s
the state ofL.

~ii ! FactorGs8 : Boltzmann factor corresponding to tran
verse interaction within layerL8, same as in the growth
model.Gs : same, layerL.

~iii ! FactorLs8s : Boltzmann factor corresponding to lon
gitudinal interactions between the two layers, same as in
GM. ~See Table I!.
5-6
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~iv! FactoreN
s8
1

D1N
s8
2

A: Boltzmann factor correspondin
to the coupling of the molecules of layerL8 to an external
field. The energy of a polarization11 or 21 amounts to
2D or 2A, respectively. Note that this interaction applies
one of the two layers only (L8).

The longitudinal interaction energies~divided bykT) be-
tween two corresponding molecules ofL8, L ~with polariza-
tions s8, s) are summarized in Table III.

The following reinterpretation is more elegant and d
closes the symmetry between the two layers. The same
interaction as described above is obtained with an exte
field affecting all molecules of both layers together with
appropriate longitudinal Isinglike interaction between cor
sponding molecules, the transverse interactions remai
the same as before~see Table IV!. The Ising coupling
strength~energy of parallel configuration minus energy
antiparallel configuration divided bykT) is

Qi52
A1D

2
. ~25!

The external coupling of polarizations is sB,

B52
D2A

4
. ~26!

In this most symmetric formulation, the external coupli
term is responsible for the predominance of positive pola
in the sectorD.A. Note that an exchange of the two laye
does not affect the energy.

To summarize, the HamiltonianH2 of the two-layer sys-
tem reads

H2 /kT5(
x,y

Q'

2
sx,y~sx,y111sx11,y!

1(
x,y

Q'

2
sx,y8 ~sx,y118 1sx11,y8 !1B(

x,y
~sx,y1sx,y8 !

1
Qi

2 (
x,y

~11sx,ysx,y8 !, ~27!

TABLE III. Two-layer system LL, coupling energies divided b
kT. See Table IV for an equivalent scheme.

s8 s Longitudinal External field Total

2 2 0 2A 2A
2 1 A 2A 0
1 2 D 2D 0
1 1 0 2D 2D

TABLE IV. Two-layer system LL, symmetric coupling scheme

s8 s Longitudinal External field Total

2 2 2(A1D)/2 2(D2A)/4 2A
2 1 0 0 0
1 2 0 0 0
1 1 2(A1D)/2 22(D2A)/4 2D
02160
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wheresxy8 andsxy denote the polarizations at sitex,y.
The equivalence presented here seems potentially us

for the analysis of the layer-by-layer growth model.
~i! The asymptotic statistics of the GM can be obtain

from a Monte-Carlo simulation of the thermal equilibrium
the system LL. All known techniques of simulating a cano
cal ensemble can be applied directly.

~ii ! Any phase transitions suspected in simulations a
approximate analyzes of GM must correspond to a ther
equilibrium phase transition in LL. Thus, phase transitions
GM get a well defined background in terms of thermal eq
librium physics.

Note that the equivalence exists on formal grounds on
There is no evident physical correspondence between
stochastic layer-by-layer growth process on the one hand
the thermodynamic equilibrium of the two-layer system
the other. Remember that the equivalence described here
plies to theasymptoticstatistics of the GM (z→`).

The theorem presented in this section is similar to t
given in Ref.@8#, where a model for growth of binary alloy
is considered, and where the asymptotic layer statistics
proved to be equivalent to the thermal equilibrium statist
of a two-layer system. Unlike our theorem, the interacti
between the two layers of their equilibrium system is exac
the same as that assumed in their growth process. The c
plication in our case goes back to a lack of symmetry: th
interaction governing the growth process is symmetric w
respect to an exchange of the two layers; ours is not.

B. The asymptotic distribution of layer pairs

The correspondence between the growth process GM
the two-layer system LL goes even beyond the one-la
statistics. In the present section we shall prove that the
tribution of layerpairs is the same:Ps8s

GM
5Ps8s

LL . Here, the
first symbol refers to the growth process~GM; z→`) and
denotes the probability of finding two consecutive layers
given statess8,s; the second symbol denotes the probabil
of the two-layer system LL to have its first and second la
in statess8 and s, respectively. In other words, the join
statistics of two consecutive layers of the growth proc
may be viewed as a canonical distribution of an appropr
two-layer system.

With the formulas of the preceding sections, the proof
simple. From the assumptions of the growth model we h

Ps8s
GM

5ps8Ps8s . ~28!

Inserting ps8 from Eq. ~20! and Ps8s from Eq. ~15!, we
obtain

Ps8s
GM

5ceN
s8
1

D1N
s8
2

AGs8Ls8sGs . ~29!

On the other hand, the probabilityPs8s
LL of a state (s8,s) of

the two-layer system is proportional toKs8s and the explicit
expression~22! for Ks8s matches the expression given fo
Ps8s

GM in Eq. ~29!. This completes the proof.
5-7
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VI. TWO-LAYER SYSTEM: BETHE-PEIERLS
DESCRIPTION

In the preceding section we have shown that
asymptotic one- and two-layer statistics of the growth mo
is equivalent to the canonical distribution of an appropri
two-layer system. Thus, the asymptotic statistics of the gr
ing system is reduced to a thermal equilibrium proble
which can be approached by many proven approxima
methods. In the present section, we follow the guidelines
the Bethe method.

The application of Bethe’s method to the antiferroma
netic phase transition of the Ising model with the inclusion
an external magnetic field was treated a long time a
@14,15#. In the present situation, this treatment has to be
tended to two layers,L8 and L, and must include also th
Ising interaction between the layers.

Within layer L8 we consider a site (x,y) and its four
nearest neighbors, polarities being denoted bys08 and sk8 (k
51, . . .,4). The polarities of the corresponding sites
layer L are denoted bys0 and sk (k51, . . . ,4). Inwriting
down the partition sum of this subsystem consisting of
molecules, the internal pair interactions and the interac
with the field B can be taken care of exactly, whereas t
influence of the environment onto the 234 peripheral polar-
izations is approximated by mean fieldsV(g). Note thatV(g)

may depend on which sublatticeg (g51,2; x1y odd or
even! the central sites of our subsystem belong to.V(1) and
V(2) will then be determined from requirements of cons
tency ~see below!.

The partition sum of our subsystem reads

Z(g)5(
a

exp~2ua
(g)!, ~30!

the sum extending over all 1024 statesa
5$s08 , . . . ,s48 ,s0 , . . . ,s4%. The symbolua

(g) collects all in-
teractions mentioned above:

ua
(g)5

Qi

2
s08s01B~s081s0!1 (

k51

4 FQi

2
sk8sk1B~sk81sk!

1
Q'

2
~s08sk81s0sk!1V(g)~sk81sk!G . ~31!

The explicit expression forZ(g) can be simplified, since
all four peripheral pairs (k51, . . . ,4) give rise to the same
factor V (g)(s08 ,s0),

Z(g)5 (
s08 ,s0

Z(g)~s08 ,s0!, ~32!

Z(g)~s08 ,s0!5@V (g)~s08 ,s0!#43expF2
Qi

2
s08s02B~s081s0!G ,

~33!
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V (g)~s08 ,s0!5(
s8,s

expF2
Qi

2
s8s2B~s81s!

2
Q'

2
~s08s81s0s!2V(g)~s81s!G .

The expectation value of the sum of the two central pol
izations is

^s081s0&
(g)5

2

Z(g)
@Z(g)~1,1 !2Z(g)~2,2 !#, ~34!

whereas the expectation value of the sum of a pair of per
eral polarizations can be obtained by differentiating with
spect toV(g),

^sk81sk&
(g)52

1

4

1

Z(g)

]

]V(g)
Z(g). ~35!

Finally, the consistency requirements can be written do
~central spins of one sublattice are the peripheral spins of
other sublattice!:

^s081s0&
(1)5^sk81sk&

(2), ~36!

^s081s0&
(2)5^sk81sk&

(1). ~37!

For a given set of couplings (A, D, Q'), Eqs.~36! and~37!
constitute the equations for the determination ofV(1) and
V(2). They are polynomial equations of high degree, wh
can be solved numerically~we have used theMATHEMATICA

system@16# for the numerical treatment!. The probabilites of
the different states of the subsystem are then known~being
proportional to their contribution to the partition sum!, as
well as other characteristics of the system, such as, for
ample, the covariancês08 sk8& of adjacent polarizations.

Figure 4~b! displays the dependence of the sublattice p
larizations and of the mean polarization on the couplingQ'

for the parameter setA52.0, D50.8 as obtained from the
Bethe approximation. The AFO-phase transition occurs
Q'

(crit)'0.44, to be compared with a value of about 0.53 o
tained from simulations of the two-layer system with t
same parameters and with side lengthd550. This is some
improvement over the mean field approximation, whi
yields a critical value of about 0.33 in the same situation.
both approximations, the difference of sublattice polariz
tions rises with a critical exponent of 1/2.

The parameter range in (A, D, Q') space allowing for an
AFO transition can be derived from Eqs.~36! and~37!. The
numerical results are displayed in Fig. 5, where the criti
value Q'

(crit) is given as a function ofA and D. We restrict
ourselves to a sketch of the derivation. For given (A,D,Q'),
Eqs.~36! and~37! each define a curve,C(1) andC(2), in the
plane of the variablesV(1), V(2). Due to the symmetry be
tween the two sublattices, the two curves are symmetric w
respect to the diagonalV(1)5V(2). The intersections of the
two curves are the solutions of Eqs.~36! and ~37!. As ex-
pected, for low values ofQ' there is only the symmetric
solution, whereas there are three solutions for sufficien
5-8
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large values ofQ' . The limiting case, corresponding to th
phase transition, is characterized by the curvesC(1) andC(2)

intersecting the diagonal with a slope of21. The slope of
the curves~especially atV(1)5V(2)) can be obtained by dif-
ferentiating Eqs.~36! and ~37! with respect toV(1), V(2),
from where the critical condition can be formulated. T
results displayed in Fig. 5 were obtained numerically.

Both in the mean field approximation as well as in t
Bethe approximation the mean polarization exhibits a k
when tracked as a function ofQ' @Figs. 4~a! and 4~b!#. Like-
wise, a kink is expected in the dependence of the mean
larization on the temperature at fixed coupling energ
DEA , DED , DE' . Figure 6 displays the polarization for th
couplings A52.0T0 /T, D50.8T0 /T, Q'50.54T0 /T as a
function of T/T0, whereT is the temperature andT0 is an
arbitrary reference temperature~dimensionless notation fo
fixed coupling energies!. The kink corresponds to the phas
transition in the Bethe approximation. In addition, Fig.
displays the results of our Monte Carlo simulations; aga
no kink is observed here. The critical point obtained fro
simulations is indicated by the dotted curves~begining of the
sublattice branches; they are bent towards lower temp
tures!.

FIG. 5. Phase diagram in the quadrantA.0, D.0: critical
valueQ'

(crit) of Q as a function ofA, D. Bethe approximation. Axes
A, D. Parameter:Q'

(crit) .

FIG. 6. Layer polarizations in the large-z limit. A52.0T0 /T,
D50.8T0 /T, Q'50.54T0 /T. Abscissa:t5T/T0 (T, temperature;
T0, arbitrary reference temperature!. Ordinate: average layer pola
izations. Solid line: mean polarization~Bethe approximation!. Bro-
ken line: mean polarization~simulation results!. Dotted line: sublat-
tice polarizations as estimated from simulations~curves bent to the
left!.
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In both approximations treated here, the phase transi
is not destroyed by the external field influencing the tw
layer system. This is in accordance with the behavior of
two-dimensional Ising model, where the antiferromagne
phase transition survives an external magnetic field provi
it is below a critical value@17–20#.

To summarize the main results of the present paper,
have analyzed a specific growth process characterized b
infinite sequence of thermal equilibrium adherence of n
layers onto previously formed layers, which then are
sumed to be frozen. The thermal equilibrium of the adhe
layer is governed by longitudinal and transverse Ising-ty
couplings. As stated previously@4#, this sequence of pro
cesses leads to the formation of bulk polarization. In
present paper we are mainly concerned with the fact that
sequence of processes leads asymptotically to a statio
two-layer statistics. Depending on the signs and magnitu
of the coupling constants, the single layer may be FO
AFO ordered, and from one layer to the next local, polari
tions may tend to reproduce or flip. Our main theoretic
results concern the equivalence of the asymptotic two-la
statistics of this growth process with the canonical distrib
tion of an appropriate two-layer system with Ising-like nea
est neighbor couplings. We have made use of this equ
lence, in that we have analyzed the asymptotic two-la
statistics by means of a Bethe-Peierls treatment. We h
written simulation programs for the growth process and
the canonical distribution of the two-layer equivalent syste
The present analysis explains the phenomena of grow
induced polarity formation as observed in real materials@5#
and is intended to provide a systematic theoretical elab
tion of possible phenomena for any signs of the couplin
involved.
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APPENDIX: ISOLATED CHAIN

For an isolated chain, the statess of a layer reduce to the
two polarizationss561 of one molecule. The distribution
p of the polarization in the long chain limit (z→`) is de-
termined by the condition

(
s8

ps8Ps8s5ps ,s561, ~A1!

with the transition probabilitiesPs8s

P1151/~11e2D!, P125e2D/~11e2D!,

P215e2A/~11e2A!, P2251/~11e2A!. ~A2!

The normalized solution reads

p15~11eD!/~21eA1eD!, ~A3!

p25~11eA!/~21eA1eD!. ~A4!
5-9
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